PembahasanDiketahui bahwa dan adalah perbandingan berbalik nilai, maka perkalian setiap pasangan nilai dan akan menghasilkan nilai yang konstan. Untuk titik , diperoleh dan sehingga didapatkan perkaliannya sebagai berikut. Dengan demikian, diperoleh persamaan grafik di atassebagai berikut. Jadi, jawaban yang tepat adalah bahwa dan adalah perbandingan berbalik nilai, maka perkalian setiap pasangan nilai dan akan menghasilkan nilai yang konstan. Untuk titik , diperoleh dan sehingga didapatkan perkaliannya sebagai berikut. Dengan demikian, diperoleh persamaan grafik di atas sebagai berikut. Jadi, jawaban yang tepat adalah B.Dalamartikel ini terdapat 6 contoh soal matematika SMP dalam bentuk pilihan ganda tentang materi sudut-sudut bertolak belakang dan hubungan antar sudut pada dua garis sejajar. Materi ini termasuk ke dalam Bab garis dan sudut yang diajarkan pada kelas 7 SMP kurikulum 2013 semester 2.
Di dalam artikel ini terdapat 30 contoh soal matematika SMP dalam bentuk pilihan ganda untuk BAB garis dan ini diajarkan pada kelas 7 SMP kurikulum 2013 semester 2. Contoh soal dibawah ini sudah dibuat berdasarkan buku matematika kurikulum 2013 revisi setiap kelompok soal akan ada Link yang dapat kalian gunakan untuk melihat pembahasan dan kunci jawaban dari masing-masing contoh adalah Soal 1Perhatikan gambar dibawah diatas menunjukkan hubungan antara.......A. Garis yang terletak di atas bidangB. Titik yang terletak di luar bidangC. Titik yang terletak pada garisD. Titik yang terletak di luar garisContoh Soal 2Sebuah garis merupakan bagian dari bidang A. Garis tersebut membagi bidang A menjadi dua bagian. Hubungan antara garis tersebut dengan bidang A adalah.........A. Garis terletak pada bidangB. Garis memotong bidangC. Garis berada diluar bidangD. Garis menembus bidangContoh Soal 3Diketahui ciri-ciri dua garis sebagai berikut1 jarak antara kedua garis tersebut di semua bagian adalah sama2 tidak pernah berpotongan di suatu ritik3 perpotongan dua garis membentuk sudut 90 derajat4 salah satu garis merupakan bagian dari garis lainnyaYang merupakan ciri-ciri dua garis sejajar ditunjukkan oleh nomor........A. 1 dan 2B. 1 dan 3C. 2 dan 4D. 3 dan 4Contoh Soal 4Pada garis l terdapat empat buah titik yaitu titik A, B, C dan D. Banyak ruas dari garis l tersebut adalah.........A. 3B. 4C. 5D. 6Contoh Soal 5Perhatikan gambar dibawah iniBerdasarkan gambar tersebut maka pernyataan dibawah iji yang tidak benar adalah.........A. Terdapat dua garis yang saling sejajar yaitu garis p//q dan garis r//sB. Jika garis p//q dan garis r//s, maka garis p pasti sejajar dengan garis r atau garis q pasti sejajar dengan garis sC. Garis r memotong garis p dan q di titik a dan dD. Garis s memotong garis p dan q di titik b dan cGambar dibawah ini digunakan untuk menjawab soal nomor 6 dan Soal 6Berdasarkan gambar limas segitiga di atas, garis-garis yang saling sejajar adalah kecuali........A. Garis AB//DEB. Garis AD//BEC. Garis AC//EFD. Garis AD//CFContoh Soal 7Berdasarkan gambar limas diatas maka pernyataan dibawah ini yang tidak benar adalah........A. Jika garis garis pada limas tersebut diperpanjang maka terdapat 6 buah titik potongB. Garis AB dan AD saling berpotongan tegak lurus di titik AC. Terdapat 12 pasang garis yang saling berpotongan tegak lurusD. Garis DE berpotongan tegak lurus dengan garis DFContoh Soal 8Diketahui gambar sebagai garis DE//CB, maka nilai x pada gambar diatas adalah………A. 10 cmB. 14 cmC. 18 cmD. 20 cmContoh Soal 9Perhatikan gambar dibawah ini. Jika panjang PT = 5 cm, TQ = 15 cm, PS = 7 cm, maka panjang SR adalah………A. 21 cmB. 22 cmC. 23 cmD. 24 cmContoh Soal 10Pada gambar diatas garis NO//ML dan panjang KN = 12 cm, OL = 12 cm dan KL = 26 cm. Maka panjang KM adalah……..A. 18 cmB. 19 cmC. 20 cmD. 21 cmContoh Soal 11DiketahuiEI = 10 cm, EH = 8 cm, HG = 12 cm dan GF = 20 cm. Nilai x dan y pada gambar diatas berturut-turut adalah……..A. 10 cm dan 8 cmB. 15 cm dan 8 cmC. 10 cm dan 15 cmD. 12 cm dan 15 cmContoh Soal 12Diketahui gambar trapesium sebagai KJ, LM dan HI pada gambar di atas adalah sejajar. Jika panjang KJ = 20 cm, KL = 10 cm, LH = 14 cm dan panjang HI = 38 cm, maka panjang LM adalah……A. 27,5 cmB. 26,5 cmC. 25,5 cmD. 24,5 cmContoh Soal 13Perhatikan gambar dibawah sudut yang terdapat pada gambar diatas adalah…….A. 4 buahB. 8 buah C. 10 buah D. 12 buahContoh Soal 14Jumlah sudut yang dibentuk oleh 15 buah sinar garis yang saling bertemu pada satu titik adalah…………A. 14B. 13C. 12D. 10Contoh Soal 15Jumlah sudut tumpul yang terdapat pada gambar dibawah ini adalah……..A. 2B. 3C. 4D. 5Contoh Soal 16Jenis sudut yang dibentuk oleh 2/9 putaran penuh adalah……..A. Sudut lurusB. Sudut tumpulC. Sudut siku-siku D. Sudut lancip Contoh Soal 17Diantara pukul berikut ini yang sudut terkecil antara jarum panjang dan jarum pendeknya menunjukkan sudut 120⁰ adalah………A. Soal 18Sudut terkecil yang dibentuk oleh jarum jam pada pukul adalah……..A. 80,5⁰B. 65,5⁰C. 50,5⁰D. 45,5⁰Contoh Soal 19Sudut terkecil yang dibentuk oleh jarum jam pada pukul adalah……..A. 80,5⁰B. 65,5⁰C. 50,5⁰D. 45,5⁰Contoh Soal 20Besar sudut penyiku dari sudut 35⁰ adalah…….A. 55⁰B. 65⁰C. 145⁰D. 325⁰Contoh Soal 21Diketahui gambar sebagai a pada gambar diatas adalah…….A. 15⁰B. 30⁰C. 75⁰D. 150⁰Contoh Soal 22Berdasarkan gambar dibawah ini maka besar∠PQT adalah………A. 113⁰B. 73⁰C. 42⁰D. 32⁰Contoh Soal 23Jika ∠m = ⅕ ∠n dan kedua sudut ini saling berpenyiku, maka besar dari masing-masing sudut ini adalah…….A. 55⁰ dan 35⁰B. 65⁰ dan 25⁰C. 75⁰ dan 15⁰D. 85⁰ dan 5⁰Contoh Soal 24Diketahui selisih ∠a dan ∠b adalah = 60⁰ dan besar ∠a = 3 ∠b. Jenis sudut pelurus dari ∠a adalah sudut…….A. Siku-siku B. LancipC. TumpulD. LurusContoh Soal 25Berdasarkan gambar diatas maka besar sudut x, y dan z berturut-turut adalah………A. 140⁰, 50⁰, 50⁰B. 140⁰, 40⁰, 140⁰C. 40⁰, 140⁰, 140⁰D. 50⁰, 140⁰, 140⁰Contoh Soal 26Perhatikan gambar dibawah x dan y adalah……….A. 45⁰ dan 75⁰B. 40⁰ dan 70⁰C. 35⁰ dan 70⁰D. 35⁰ dan 60⁰Contoh Soal 27Berdasarkan gambar dibawah ini maka pernyataan berikut yang tidak benar adalah………..A. Besar ∠1 = ∠8B. Terdapat dua pasangan sudut dalam sepihakC. ∠2 dan ∠8 adalah sudut-sudut sehadap yang besarnya samaD. Besar ∠1 = ∠4 = ∠5 = ∠8Contoh Soal 28Perhatikan gambar berikut Berdasarkan gambar tersebut, maka nilai x dan y adalah……..A. 30⁰ dan 45⁰B. 55⁰ dan 30⁰C. 60⁰ dan 30⁰D. 55⁰ dan 45⁰Contoh Soal 29Diketahui dua garis sejajar saling berpotongan seperti gambar dibawah ini. Jika m∠1 = 100⁰, maka besar ∠8 adalah……..A. 80⁰B. 70⁰C. 60⁰D. 50⁰Contoh Soal 30Perhatikan gambar dibawah iniJika AB sejajar dengan CD dan garis EG sejajar dengan FH serta besar ∠CGE = 116⁰, maka nilai x adalah……..A. 64⁰B. 81⁰C. 99⁰D. 180⁰Nah, hitunglah 30 buah contoh soal matematika SMP untuk bab garis dan sudut yang dapat diberikan pada artikel kali kunjungi Link yang terdapat pada dibawah soal untuk melihat kunci jawaban serta pembahasan dari soal-soal di kasih sudah berkunjung.
Sekianyang dapat admin bagikan terkait cara menentukan variabel x dan y pada skripsi. Ini adalah langkah awal dan yang paling mudah. Berbeda dengan Judul Skripsi Manajemen SDM 2 variabel yang pembahasannya lebih simpel. Namun mayoritas menyatakan bahwa variabel merupakan hal yang dipelajari di teliti atau di analisis.Hayo, siapa yang suka ngebanding-bandingin sesuatu? Misalnya, ketika nilai ujian dibagikan, biasanya momen membandingkan ini selalu berlangsung. Mulai dengan penasaran dan nanya, Eh, nilai lo berapa?’ Lalu, pas tahu nilai teman kita lebih besar, kita sakit hati, nyobek lembar ujian, lalu nelen bulat-bulat sambil menjerit, KENAPAAAA?!!’ Masalahnya, apa, sih, pengertian perbandingan itu? Bagaimana cara membandingkan yang benar dan apa saja jenis-jenis perbandingan? Stres karena nilai temen lebih gede saat dibandingin sumber Ternyata, meskipun terdengar remeh dan biasa kamu lakukan, kegiatan membandingkan itu ada kaitannya dengan matematika, lho. Ada cara-cara tertentu yang bisa kamu gunakan untuk melakukan perbandingan. Bagaimana Cara Membandingkan? Misalnya, nilai ujian matematika Yodi 80 dan nilai ujian matematika Rian 60. Nah, dari keterangan ini, kita dapat membandingkan data-data yang ada, yaitu 1. Nilai ujian Yodi 20 poin lebih besar. [Hal ini didapat dari perhitungan 80 – 60 = 20 poin] 2. Nilai Yodi empat per tiga kali lebih besar daripada Rian. [Hal ini didapat dari perhitungan 80/60 = 4/3] Dalam melakukan perbandingan, ada dua hal yang harus kamu perhatikan 1 Dalam membandingkan dua besaran dengan cara menghitung hasil bagi, besaran-besaran tersebut harus merupakan besaran yang sejenis. Contoh perbandingan yang salah Panjang pensil Ani ¾ kali berat badan Yudi Hal ini salah karena panjang pensil berada dalam satuan cm, sementara berat badan Yudi dalam satuan kg. Contoh perbandingan yang hampir benar Panjang pensil Ani 13 cm sementara panjang pensil Roberto 2 m. Hal ini karena kedua satuannya berbeda. Sehingga, ukuran satuannya harus disamakan terlebih dahulu menjadi sama-sama cm, atau sama-sama m. 2 Ketika melakukan perbandingan, pastikan hasil bagi kedua besaran suatu bilangan harus dalam bentuk yang paling sederhana. Misalnya, Kakak mempunyai uang sementara Adik Berapa perbandingan uang mereka? Kalau kamu menjawab 155 itu artinya kamu masih belum tepat. Bilangan itu masih bisa diperkecil lagi menjadi bentuk yang lebih sederhana. Berapa? Coba tulis di kolom komentar ya! Jenis-Jenis Perbandingan 1. PERBANDINGAN SENILAI Misalnya, terdapat himpunan-himpunan bilangan A = {1, 2, 3, 4, 5} dan B = {10, 20, 30, 40, 50} Himpunan A menyatakan waktu tempuh dalam satuan detik dan himpunan B menyatakan jarak yang ditempuh dalam satuan kilometer. Sekarang coba, deh, kamu pikir, apa nyumabungnya antara waktu tempuh dan jarak? Ya, betul. “sejauh”. Kita dapat mengaitkan waktu tempuh s “sejauh” jarak yang dia tempuh km. Maka hasilnya A 1 detik sejauh 10 km B 2 detik sejauh 20 km C 3 detik sejauh 30 km D 4 detik sejauh 40 km E 5 detik sejauh 50 km Kalau kita buat dalam bentuk tabel, maka akan menjadi Kamu sudah mulai bisa melihat polanya belum, Squad? Dalam perbandingan senilai, semakin tinggi nilai yang satu A, maka akan semakin tinggi juga nilai Bnya. Oleh karena itu, perbandingan jenis ini disebut sebagai perbandingan senilai. Karena nilai A akan “sejalan” dengan nilai B. Apabila data tadi kita olah dalam bentuk grafik koordinat kartesius, maka hasilnya akan seperti ini 2. PERBANDINGAN BERBALIK NILAI Misalnya, ada seorang peternak mempunyai 150 ekor sapi. Satu ikat rumput dihabiskan dalam waktu satu hari. Itu artinya, apabila peternak tersebut mempunyai A 75 ekor sapi, pakan ternak habis dalam waktu 2 hari B 50 ekor sapi, pakan ternak habis dalam waktu 3 hari C 30 ekor sapi, pakan ternak dihabiskan dalam waktu 5 hari D 25 ekor sapi, pakan ternak dihabiskan dalam waktu 6 hari Kalau kita buat dalam bentuk tabel, maka akan terlihat seperti berikut Dari data itu, dapat disimpulkan bahwa semakin sedikit jumlah sapi, maka jumlah yang dibutuhkan semakin banyak. Nah, perbandingan sepert ini dinamakan dengan perbandingan berbalik nilai. Apabila data tadi kita olah dalam bentuk grafik koordinat akrtesius, maka hasilnya akan menjadi Bagaimana, sudah mulai terlihat jelas kan perbedaan antara perbandingan senilai dan berbalik nilai. Kalau yang arahnya “sejalan”, itu termasuk ke dalam perbandingan senilai. Di sisi lain, kalau berbanding terbalik, masuk ke dalam perbandingan berbalik nilai. Kali ini kita sudah membahas tentang pengertian perbandingan, cara membuat perbandingan dan syarat-syaratnya, serta jenis-jenis perbandingan. Kalau kamu masih ada kesulitan atau tambahan, jangan ragu untuk tulis di kolom komentar ya, Squad. Lebih suka memelajari materi seperti ini sambil menonton video animasi lucu? ruangbelajar jawabannya! Referensi Raharjo M. 2018 Matematika SMP/MTs Kelas VII. Jakarta Erlangga Sumber foto GIF Orang Menangis’ [Daring]. Tautan Diakses 22 Desember 2020 Artikel diperbarui pada 22 Desember 2020
.